Primary light-induced reaction steps of reversibly photoswitchable fluorescent protein Padron0.9 investigated by femtosecond spectroscopy.

نویسندگان

  • Arne Walter
  • Martin Andresen
  • Stefan Jakobs
  • Jörg Schroeder
  • Dirk Schwarzer
چکیده

The reversible photoswitching of the photochromic fluorescent protein Padron0.9 involves a cis-trans isomerization of the chromophore. Both isomers are subjected to a protonation equilibrium between a neutral and a deprotonated form. The observed pH dependent absorption spectra require at least two protonating groups in the chromophore environment modulating its proton affinity. Using femtosecond transient absorption spectroscopy, we elucidate the primary reaction steps of selectively excited chromophore species. Employing kinetic and spectral modeling of the time dependent transients, we identify intermediate states and their spectra. Excitation of the deprotonated trans species is followed by excited state relaxation and internal conversion to a hot ground state on a time scale of 1.1-6.5 ps. As the switching yield is very low (Φtrans→cis = 0.0003 ± 0.0001), direct formation of the cis isomer in the time-resolved experiment is not observed. The reverse switching route involves excitation of the neutral cis chromophore. A strong H/D isotope effect reveals the initial reaction step to be an excited state proton transfer with a rate constant of kH = (1.7 ps)(-1) (kD = (8.6 ps)(-1)) competing with internal conversion (kic = (4.5 ps)(-1)). The deprotonated excited cis intermediate relaxes to the well-known long-lived fluorescent species (kr = (24 ps)(-1)). The switching quantum yield is determined to be low as well, Φcis→trans = 0.02 ± 0.01. Excitation of both the neutral and deprotonated cis chromophores is followed by a ground state proton transfer reaction partially re-establishing the disturbed ground state equilibrium within 1.6 ps (deuterated species: 5.6 ps). The incomplete equilibration reveals an inhomogeneous population of deprotonated cis species which equilibrate on different time scales.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular basis of the light-driven switching of the photochromic fluorescent protein Padron.

Reversibly switchable fluorescent proteins can be repeatedly photoswitched between a fluorescent and a nonfluorescent state by irradiation with the light of two different wavelengths. The molecular basis of the switching process remains a controversial topic. Padron0.9 is a reversibly switchable fluorescent protein with "positive" switching characteristics, exhibiting excellent spectroscopic pr...

متن کامل

Photoinduced Chromophore Hydration in the Fluorescent Protein Dreiklang Is Triggered by Ultrafast Excited-State Proton Transfer Coupled to a Low-Frequency Vibration.

Because of growing applications in advanced fluorescence imaging, the mechanisms and dynamics of photoinduced reactions in reversibly photoswitchable fluorescent proteins are currently attracting much interest. We report the first time-resolved study of the photoswitching of Dreiklang, so far the only fluorescent protein to undergo reversible photoinduced chromophore hydration. Using broadband ...

متن کامل

Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography.

Chromophores absorb light in photosensitive proteins and thereby initiate fundamental biological processes such as photosynthesis, vision and biofluorescence. An important goal in their understanding is the provision of detailed structural descriptions of the ultrafast photochemical events that they undergo, in particular of the excited states that connect chemistry to biological function. Here...

متن کامل

Red fluorescent protein with reversibly photoswitchable absorbance for photochromic FRET.

We have developed the first red fluorescent protein, named rsTagRFP, which possesses reversibly photoswitchable absorbance spectra. Illumination with blue and yellow light switches rsTagRFP into a red fluorescent state (ON state) or nonfluorescent state (OFF state), respectively. The ON and OFF states exhibit absorbance maxima at 567 and 440 nm, respectively. Due to the photoswitchable absorban...

متن کامل

Structural basis for reversible photobleaching of a green fluorescent protein homologue.

Fluorescent protein (FP) variants that can be reversibly converted between fluorescent and nonfluorescent states have proven to be a catalyst for innovation in the field of fluorescence microscopy. However, the structural basis of the process remains poorly understood. High-resolution structures of a FP derived from Clavularia in both the fluorescent and the light-induced nonfluorescent states ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 119 16  شماره 

صفحات  -

تاریخ انتشار 2015